Design and Characterization of Chemically Stabilized Aβ42 Oligomers.
نویسندگان
چکیده
A popular working hypothesis of Alzheimer's disease causation is amyloid β-protein oligomers are the key neuropathogenetic agents. Rigorously elucidating the role of oligomers requires the production of stable oligomers of each size. We previously used zero-length photochemical cross-linking to allow stabilization, isolation, and determination of structure-activity relationships of pure populations of Aβ40 dimers, trimers, and tetramers. We also attempted to study Aβ42 but found that Aβ42 oligomers subjected to the same procedures were not completely stable. On the basis of the fact that Tyr is a critical residue in cross-linking chemistry, we reasoned that the chemical accessibility of Tyr10 in Aβ42 must differ from that in Aβ40. We thus chemically synthesized four singly substituted Tyr variants that placed the Tyr in different positions across the Aβ42 sequence. We then studied the stability of the resulting cross-linked oligomers as well as procedures for fractionating the oligomers to obtain pure populations of different sizes. We found that [Phe(10),Tyr(42)]Aβ42 produced stable oligomers yielding highly pure populations of dimers through heptamers. This provides the means to establish formal structure-activity relationships of these important Aβ42 assemblies. In addition, we were able to analyze the dissociation patterns of non-cross-linked oligomers to produce a model for oligomer formation. This work is relevant to the determination of structure-activity relationships that have the potential to provide mechanistic insights into disease pathogenesis.
منابع مشابه
Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments.
The formation of amyloid-β peptide (Aβ) oligomers at the cellular membrane is considered to be a crucial process underlying neurotoxicity in Alzheimer's disease (AD). Therefore, it is critical to characterize the oligomers that form within a membrane environment. To contribute to this characterization, we have applied strategies widely used to examine the structure of membrane proteins to study...
متن کاملSmall Bifunctional Chelators That Do Not Disaggregate Amyloid β Fibrils Exhibit Reduced Cellular Toxicity
Multifunctional metal chelators that can modulate the amyloid β (Aβ) peptide aggregation and its interaction with metal ions such as copper and zinc hold considerable promise as therapeutic agents for Alzheimer's disease (AD). However, specific rather than systemic metal chelation by these compounds is needed in order to limit any side effects. Reported herein are two novel small bifunctional c...
متن کاملSDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS
The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spect...
متن کاملSynergistic Interactions between Alzheimer’s Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed by Single Molecule Microscopy
Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the extracellular brain deposits associated with Alzheimer's disease. While Aβ40 is the prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid deposits over the course of disease development. The low in vivo concentration (pM-nM) and metastable nature of Aβ oligomers have made identification of their...
متن کاملExtracellular chaperones prevent Aβ42-induced toxicity in rat brains.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, formation of the extracellular amyloid β (Aβ42) plaques, neuronal and synapse loss, and activated microglia and astrocytes. Extracellular chaperones, which are known to inhibit amyloid fibril formation and promote clearance of misfolded aggregates, have recently been shown to reduce efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 54 34 شماره
صفحات -
تاریخ انتشار 2015